Flow Chemistry

Multi-platform synthesis of ondansetron featuring process intensification in flow

Efficient and robust synthetic processes of active pharmaceutical ingredients (APIs) are highly desirable, and continuous flow chemistry is a critical component of this endeavor. The clinical importance of ondansetron, a World Health Organization essential medicine, prompted us to investigate continuous synthetic approaches to this API. Our efforts to improve the synthetic processes led to a continuous condensation step and a continuous Mannich reaction. A continuous work-up and purification process was also established for the former. A batch process was employed for an elimination and Michael addition step, as it not only accommodated the physical properties of the reaction mixtures, but also provided a high productivity of the desired product. Taken together, these findings demonstrate the complementary advantages of flow and batch chemistry in API synthesis.

Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform

Computer-aided synthesis planning (CASP) tools can propose retrosynthetic pathways and forward reaction conditions for the synthesis of organic compounds, but the limited availability of context-specific data currently necessitates experimental development to fully specify process details. We plan and optimize a CASP-proposed and human-refined multistep synthesis route toward an exemplary small molecule, sonidegib, on a modular, robotic flow synthesis platform with integrated process analytical technology (PAT) for data-rich experimentation. Human insights address catalyst deactivation and improve yield by strategic choices of order of addition. Multi-objective Bayesian optimization identifies optimal values for categorical and continuous process variables in the multistep route involving 3 reactions (including heterogeneous hydrogenation) and 1 separation. The platform’s modularity, robotic reconfigurability, and flexibility for convergent synthesis are shown to be essential for allowing variation of downstream residence time in multistep flow processes and controlling the order of addition to minimize undesired reactivity. Overall, the work demonstrates how automation, machine learning, and robotics enhance manual experimentation through assistance with idea generation, experimental design, execution, and optimization.

Ready, Set, Flow! Automated Continuous Synthesis and Optimization

Synthetic chemistry provides access to advanced materials that facilitate innovation in key industries such as medicine, energy, and agriculture. Automation is poised to challenge the traditional process of chemical synthesis and development. Continuous flow chemistry has recently come into maturity and provides a flexible platform amenable to automation. The merger of synthesis and automation promises to democratize access to custom complex small molecules for non-experts as well as accelerate the development of new synthetic protocols by relieving expert chemists of routine tasks. In this contribution, we discuss recent case studies that present strategies towards realizing automated synthesis with a further focus on works that leverage continuous flow chemistry as an enabling technology.

Continuous flow strategies for using fluorinated greenhouse gases in fluoroalkylations,

Large quantities of fluorinated gases are generated as intermediates or byproducts from fluorinated polymer production annually, and they are effective ozone depleting substances or greenhouse gases. On the other hand, the incorporation of fluoroalkyl groups into drug molecules or bioactive compounds has been shown to enhance biological properties such as the bioavailability, binding selectivity, and metabolic stability. Extraction of fluoroalkyl sources, including trifluoromethyl and difluoromethyl groups, from the fluorinated gases is highly desirable, yet challenging under regular batch reaction conditions. Flow chemistry is an emerging and promising technique to address long-standing challenges in gas–liquid batch reactions such as insufficient interfacial contact and scalability issues. In this review, we highlight recent advances in continuous flow strategies toward enabling the use of fluorinated greenhouse gases in organic synthesis.

Continuous flow strategies for using fluorinated greenhouse gases in fluoroalkylations

Large quantities of fluorinated gases are generated as intermediates or byproducts from fluorinated polymer production annually, and they are effective ozone depleting substances or greenhouse gases. On the other hand, the incorporation of fluoroalkyl groups into drug molecules or bioactive compounds has been shown to enhance biological properties such as the bioavailability, binding selectivity, and metabolic stability. Extraction of fluoroalkyl sources, including trifluoromethyl and difluoromethyl groups, from the fluorinated gases is highly desirable, yet challenging under regular batch reaction conditions. Flow chemistry is an emerging and promising technique to address long-standing challenges in gas–liquid batch reactions such as insufficient interfacial contact and scalability issues. In this review, we highlight recent advances in continuous flow strategies toward enabling the use of fluorinated greenhouse gases in organic synthesis.

On-Demand Generation and Use in Continuous Synthesis of the Ambiphilic Nitrogen Source Chloramine

Herein, we demonstrate the on-demand synthesis of chloramine from aqueous ammonia and sodium hypochlorite solutions, and its subsequent utilization as an ambiphilic nitrogen source in continuous-flow synthesis. Despite its advantages in cost and atom economy, chloramine has not seen widespread use in batch synthesis due to its unstable and hazardous nature. Continuous-flow chemistry, however, provides an excellent platform for generating and handling chloramine in a safe, reliable, and inexpensive manner. Unsaturated aldehydes are converted to valuable aziridines and nitriles, and thioethers are converted to sulfoxides, in moderate to good yields and exceedingly short reaction times. In this telescoped process, chloramine is generated in situ and immediately used, providing safe and efficient conditions for reaction scale-up while mitigating the issue of its decomposition over time.

Deuteriodifluoromethylation and gem-Difluoroalkenylation of Aldehydes Using ClCF2H in Continuous Flow

The deuteriodifluoromethyl group (CF2D) represents a challenging functional group due to difficult deuterium incorporation and unavailability of precursor reagents. Herein, we report the use of chlorodifluoromethane (ClCF2H) gas in the continuous flow deuteriodifluoromethylation and gem-difluoroalkenylation of aldehydes. Mechanistic studies revealed that the difluorinated oxaphosphetane (OPA) intermediate can proceed via alkaline hydrolysis in the presence of D2O to provide α-deuteriodifluoromethylated benzyl alcohols or undergo a retro [2+2] cycloaddition under thermal conditions to provide the gem-difluoroalkenylated product.

Monolithic Silica Support for Immobilized Catalysis in Continuous Flow

Monolithic and packed-bed reactors featuring immobilized catalysts are well-precedented in continuous flow synthesis but can suffer from adverse pressure drops during use due to their small pore sizes and/or structural changes. Herein, we overcome this challenge with the synthesis of a structurally robust silica-based monolith featuring pore sizes on the millimeter scale. The 3-dimensional solid support structure is constructed from a polystyrene foam-based template and features a functional group handle that can be modified to display a reactive catalyst. Here we functionalize the support with palladium(0) for hydrogenation reactions and a modified proline catalyst for the alpha functionalization of aldehydes. Both reactors showed good activity and excellent catalytic longevity when utilized under continuous flow conditions.

Automated On-Demand Titration of Organometallic Reagents in Continuous Flow,

The use of strong organometallic bases and nucleophiles is commonplace in modern organic synthesis. That they react with a wide range of functional groups requires accurate and precise stoichiometry in reactions that utilize them. For best results, these bases are titrated prior to use, and such titrations can be time-consuming and variable due to human error near the end point. Herein, we describe an automated method for titrations of multiple commercial organometallic reagents enabled by continuous flow. Through utilizations of continuous monitoring via UV–vis spectroscopy and a feedback loop developed within LabVIEW, titrations with enhanced reproducibility were provided over current batch procedures

Continuous-Flow Chemistry in Undergraduate Education: Sustainable Conversion of Reclaimed Vegetable Oil into Biodiesel

This laboratory experiment leverages the pedagogical value and multidisciplinary nature of biodiesel production from vegetable oil to introduce students to continuous-flow chemistry, a modern and rapidly growing approach to chemical synthesis. An interdisciplinary approach exposes students to the practical and conceptual aspects of modern continuous-flow chemistry while simultaneously reinforcing core organic chemistry techniques and investing students in issues of sustainability. Students screen reaction conditions in flow through an inquiry guided approach and make evidence-based decisions to accomplish the sustainable conversion of waste cooking oil into biofuel. The laboratory experiment is designed to be highly modular and can be completed in two, three, five, or eight laboratory periods. By incorporating the burgeoning field of continuous-flow chemistry into the educational infrastructure, the experiments allow students to develop skills that are highly valued in the modern chemical workforce.