Drug Discovery

Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform

Computer-aided synthesis planning (CASP) tools can propose retrosynthetic pathways and forward reaction conditions for the synthesis of organic compounds, but the limited availability of context-specific data currently necessitates experimental development to fully specify process details. We plan and optimize a CASP-proposed and human-refined multistep synthesis route toward an exemplary small molecule, sonidegib, on a modular, robotic flow synthesis platform with integrated process analytical technology (PAT) for data-rich experimentation. Human insights address catalyst deactivation and improve yield by strategic choices of order of addition. Multi-objective Bayesian optimization identifies optimal values for categorical and continuous process variables in the multistep route involving 3 reactions (including heterogeneous hydrogenation) and 1 separation. The platform’s modularity, robotic reconfigurability, and flexibility for convergent synthesis are shown to be essential for allowing variation of downstream residence time in multistep flow processes and controlling the order of addition to minimize undesired reactivity. Overall, the work demonstrates how automation, machine learning, and robotics enhance manual experimentation through assistance with idea generation, experimental design, execution, and optimization.

Continuous flow strategies for using fluorinated greenhouse gases in fluoroalkylations

Large quantities of fluorinated gases are generated as intermediates or byproducts from fluorinated polymer production annually, and they are effective ozone depleting substances or greenhouse gases. On the other hand, the incorporation of fluoroalkyl groups into drug molecules or bioactive compounds has been shown to enhance biological properties such as the bioavailability, binding selectivity, and metabolic stability. Extraction of fluoroalkyl sources, including trifluoromethyl and difluoromethyl groups, from the fluorinated gases is highly desirable, yet challenging under regular batch reaction conditions. Flow chemistry is an emerging and promising technique to address long-standing challenges in gas–liquid batch reactions such as insufficient interfacial contact and scalability issues. In this review, we highlight recent advances in continuous flow strategies toward enabling the use of fluorinated greenhouse gases in organic synthesis.

Progress Toward a Large-Scale Synthesis of Molnupiravir (MK-4482, EIDD-2801) from Cytidine

Molnupiravir (MK-4482, EIDD-2801) is a promising orally bioavailable drug candidate for the treatment of COVID-19. Herein, we describe a supply-centered and chromatography-free synthesis of molnupiravir from cytidine, consisting of two steps: a selective enzymatic acylation followed by transamination to yield the final drug product. Both steps have been successfully performed on a decagram scale: the first step at 200 g and the second step at 80 g. Overall, molnupiravir has been obtained in a 41% overall isolated yield compared to a maximum 17% isolated yield in the patented route. This route provides many advantages to the initial route described in the patent literature and would decrease the cost of this pharmaceutical should it prove safe and efficacious in ongoing clinical trials.

Di-tert-butyl Phosphonate Route to the Antiviral Drug Tenofovir

Di-tert-butyl oxymethyl phosphonates were investigated regarding their suitability for preparing the active pharmaceutical ingredient tenofovir (PMPA). First, an efficient and simple access to the crystalline di-tert-butyl(hydroxymethyl)phosphonate was developed. O-Mesylation gave high yields of the active phosphonomethylation reagent. For the synthesis of tenofovir, a two-step sequence was developed using Mg(OtBu)2 as the base for the alkylation of (R)-9-(2-hydroxypropyl)adenine. Subsequent deprotection could be achieved with aqueous acids. (Di-tert-butoxyphosphoryl)methyl methanesulfonate showed to be the most efficient electrophile tested, affording PMPA in 72% yield on a 5 g scale. The developed protocol could also be applied for the preparation of the hepatitis B drug adefovir (64% yield/1 g scale)

Seven-Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification

Herein, the blockbuster antibacterial drug linezolid is synthesized from simple starting blocks by a convergent continuous flow sequence involving seven (7) chemical transformations. This is the highest total number of distinct reaction steps ever performed in continuous flow without conducting solvent exchanges or intermediate purification. Linezolid was obtained in 73 % isolated yield in a total residence time of 27 minutes, corresponding to a throughput of 816 mg h−1.

7-Step FlowSynthesis of the HIV Integrase Inhibitor Dolutegravir

Dolutegravir (DTG), an important active pharmaceutical ingredient (API) used in combination therapy for the treatment of HIV, has been synthesized in continuous flow. By adapting the reported GlaxoSmithKline process chemistry batch route for Cabotegravir, DTG was produced in 4.5 h in sequential flow operations from commercially available mate-rials. Key features of the synthesis include rapid manufacturing time for pyridone formation, one-step direct amidation of a functionalized pyridone, and telescoping of multiple steps to avoid isolation of intermediates and enable for greater throughput

Advaced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing

As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards.

Minimizing E-Factor in the Continuous-Flow Synthesis of Diazepam and Atropine

Minimizing the waste stream associated with the synthesis of active pharmaceutical ingredients (APIs) and commodity chemicals is of high interest within the chemical industry from an economic and environmental perspective. In exploring solutions to this area, we herein report a highly optimized and environmentally conscious continuous-flow synthesis of two APIs identified as essential medicines by the World Health Organization, namely diazepam and atropine. Notably, these approaches significantly reduced the E-factor of previously published routes through the combination of continuous-flow chemistry techniques, computational calculations and solvent minimization. The E-factor associated with the synthesis of atropine was reduced by 94-fold (about two orders of magnitude), from 2245 to 24, while the E-factor for the synthesis of diazepam was reduced by 4-fold, from 36 to 9

On-Demand Continuous Flow Production of Pharmaceuticals in a Compact, Reconfigurable System

Pharmaceutical manufacturing typically uses batch processing at multiple locations. Disadvantages of this approach include long production times and the potential for supply chain disruptions. As a preliminary demonstration of an alternative approach, we report here the continuous-flow synthesis and formulation of active pharmaceutical ingredients in a compact, reconfigurable manufacturing platform. Continuous end-to-end synthesis in the refrigerator-sized [1.0 meter (width) × 0.7 meter (length) × 1.8 meter (height)] system produces sufficient quantities per day to supply hundreds to thousands of oral or topical liquid doses of diphenhydramine hydrochloride, lidocaine hydrochloride, diazepam, and fluoxetine hydrochloride that meet U.S. Pharmacopeia standards. Underlying this flexible plug-and-play approach are substantial enabling advances in continuous-flow synthesis, complex multistep sequence telescoping, reaction engineering equipment, and real-time formulation.

Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical

The development and operation of the synthesis and workup steps of a fully integrated, continuous manufacturing plant for synthesizing aliskiren, a small molecule pharmaceutical, are presented. The plant started with advanced intermediates, two synthetic steps away from the final active pharmaceutical ingredient, and ended with finished tablets. The entire process was run on several occasions, with the data presented herein corresponding to a 240 h run at a nominal throughput of 41 g h−1 of aliskiren. The first reaction was performed solvent-free in a molten condition at a high temperature, achieving high yields (90%) and avoiding solid handling and a long residence time (due to higher concentrations compared to dilute conditions when run at lower temperatures in a solvent). The resulting stream was worked-up inline using liquid−liquid extraction with membrane-based separators that were scaled-up from microfluidic designs. The second reaction involved a Boc deprotection, using aqueous HCl that was rapidly quenched with aqueous NaOH using an inline pH measurement to control NaOH addition. The reaction maintained high yields (90−95%) under closed-loop control despite process disturbances.