Iterative Exponential Growth of Stereo- and Sequence-Controlled Polymers

Publication
Nature Chemistry 7, 810–815, DOI: 10.1038/nchem.2346

Chemists have long sought sequence-controlled synthetic polymers that mimic nature’s biopolymers, but a practical synthetic route that enables absolute control over polymer sequence and structure remains a key challenge. Here, we report an iterative exponential growth plus side-chain functionalization (IEG+) strategy that begins with enantiopure epoxides and facilitates the efficient synthesis of a family of uniform >3 kDa macromolecules of varying sequence and stereoconfiguration that are coupled to produce unimolecular polymers (>6 kDa) with sequences and structures that cannot be obtained using traditional polymerization techniques. Selective side-chain deprotection of three hexadecamers is also demonstrated, which imbues each compound with the ability to dissolve in water. We anticipate that these new macromolecules and the general IEG+ strategy will find broad application as a versatile platform for the scalable synthesis of sequence-controlled polymers..