Synthesis

Design of dynamic trajectories for efficient and data-rich exploration of flow reaction design spaces

Batch and continuous reactors both enable exploration of a chemical design space. The former rely on transient experiments, thus experiencing a wide variety of operating conditions over time, whereas the latter are usually operated at steady state and are representative of only one set of conditions. Operating a continuous reactor under dynamic conditions allows more efficient exploration of the underlying reaction space for extraction of kinetics and optimization of performance. We present a methodology to efficiently explore a design space using a tubular flow reactor installed on an automatic platform (equipped with FTIR and HPLC analysis) operated in a transient regime using sinusoidal variations of the parameters. This data-dense method proves to be quicker with respect to steady-state operations because of the larger amount of information collected during a single experiment. A computational analysis provides a simple criterion for the design of dynamic experiments in order for them to be representative of steady-state conditions. The methodology is applied experimentally to the synthesis of a pharmaceutical intermediate via an esterification reaction in the presence of base. In the experiments, up to three parameters (reaction time, base equivalents, and temperature) are changed simultaneously. Proper design of the trajectories in the design space allows verification of the consistency of the results by exploiting the self-crossings within each trajectory and crossings between different trajectories. The experiments further validate the developed criterion for dynamic operations.

Continuous dimethyldioxirane generation for polymer epoxidation

Post-polymerization modification of commodity polymers yields new applications for materials already produced industrially. Incorporation of small amounts of epoxides into unsaturated polymers such as polybutadiene expands their use for grafting and compatibilization applications, but controlled epoxidation of these polymers in a safe, scalable manner presents a challenge. Here in we describe the development of a reactor for the continuous flow generation and use of dimethyldioxirane (DMDO) and its application to the low-level epoxidation of unsaturated polymers. A continuous stirred tank reactor (CSTR) prevents reactor clogging by allowing solid precipitates to settle, enabling the pumping of a homogeneous solution of oxidant. Modification of relative concentrations, flow rates, and temperatures achieves variable epoxidation levels. This method has been demonstrated on gram scale

Continuous-Flow Synthesis of Tramadol from Cyclohexanone

A multioperation, continuous-flow platform for the synthesis of tramadol, ranging from gram to decagram quantities, is described. The platform is segmented into two halves allowing for a single operator to modulate between preparation of the intermediate by Mannich addition or complete the fully concatenated synthesis. All purification operations are incorporated in-line for the Mannich reaction. ‘Flash’ reactivity between meta-methoxyphenyl magnesium bromide and the Mannich product was controlled with a static helical mixer and tested with a combination of flow and batch-based and factorial evaluations. These efforts culminated in a rapid production rate of tramadol (13.7 g°h–1) sustained over 56 reactor volumes. A comparison of process metrics including E-Factor, production rate, and space-time yield are used to contextualize the developed platform with respect to established engineering and synthetic methods for making tramadol.